Efficient estimation for semiparametric semi-Markov processes

نویسندگان

  • Priscilla E. Greenwood
  • Ursula U. Müller
  • Wolfgang Wefelmeyer
چکیده

We consider semiparametric models of semi-Markov processes with arbitrary state space. Assuming that the process is geometrically ergodic, we characterize efficient estimators, in the sense of Hájek and Le Cam, for arbitrary real-valued smooth functionals of the distribution of the embedded Markov renewal process. We construct efficient estimators of the parameter and of linear functionals of the distribution. In particular we treat the two cases in which we have a parametric model for the transition distribution of the embedded Markov chain and an arbitrary conditional distribution of the inter-jump times, and vice versa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

Optimality of estimators for misspecified semi-Markov models

Suppose we observe a geometrically ergodic semi-Markov process and have a parametric model for the transition distribution of the embedded Markov chain, for the conditional distribution of the inter-arrival times, or for both. The first two models for the process are semiparametric, and the parameters can be estimated by conditional maximum likelihood estimators. The third model for the process...

متن کامل

Semiparametric Hierarchical Bayes Analysis of Discrete Panel Data with State Dependence and Serial Correlation

In this paper we consider the analysis of semiparametric models for binary panel data with state dependence and serial correlation. A hierarchical approach is used in addressing heterogeneity, dealing with the initial conditions, and incorporating correlation between the covariates and the random effects. We consider a semiparametric specification in which a Markov process smoothness prior is u...

متن کامل

Semi- and Nonparametric ARCH Processes

ARCH/GARCH modelling has been successfully applied in empirical finance for many years. This paper surveys the semiparametric and nonparametric methods in univariate andmultivariate ARCH/GARCHmodels. First, we introduce some specific semiparametric models and investigate the semiparametric and nonparametrics estimation techniques applied to: the error density, the functional form of the volatil...

متن کامل

Estimation of copula-based semiparametric time series models

This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric marginal distributions and parametric copula functions, while the copulas capture all the scale-free temporal dependence of the processes. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003